The optimal marginal labor income tax

Maciej Konrad Dudek
Vistula University
IBRKK
Konrad Walczyk
Warsaw School of Economics

The problem

Following Mirrlees (1971):

$$
\max _{\tau()} W=\int_{a_{L}}^{a_{H}} G\left(U_{a}\right) f(a) d a
$$

subject to

$$
\begin{gathered}
U_{a}=u\left(y_{a}-\tau\left(y_{a}\right)\right)-v\left(\frac{y_{a}}{a}\right) \\
u^{\prime}\left(y_{a}-\tau\left(y_{a}\right)\right)\left(1-\tau^{\prime}\left(y_{a}\right)\right)=\frac{1}{a} v^{\prime}\left(\frac{y_{a}}{a}\right) \\
R=\int_{a_{L}}^{a_{H}} \tau\left(y_{a}\right) f(a) d a
\end{gathered}
$$

where:
a - agent's productivity;
f - PDF;
G - a concave function of preferences of the policy maker;
U_{a} - agent's realized utility;
y_{a} - agent's labor income;
τ-tax function;

Reformulating the problem

Following Saez (2001):
subject to

$$
\max _{c, y} u(c, y)
$$

$$
c=(1-\tau) y+m
$$

where:
c - agent's consumption;
m - government transfer;
y - labor income;
τ - tax rate;
The response is

$$
(1-\tau) u_{c}+u_{y}=0
$$

which defines implicitly a Marshallian (uncompensated) earnings supply function $y=y(1-\tau, m)$.

The effects of an increase in the marginal tax rate

Suppose $d \tau>0$ for $y>y^{*}$. Then the total change in R is $R_{s}+R_{d}$, where

$$
R_{s}=n\left(\bar{y}-y^{*}\right) d \tau \text { and } R_{d}=n \tau d y
$$

n - number of the top earners;
\bar{y} - average income (over y^{*}).
Totally differentiating

$$
d y=-\frac{\partial y}{\partial(1-\tau)} d \tau+\frac{\partial y}{\partial m} d m
$$

Let

$$
\eta^{u}=\frac{1-\tau}{y} \frac{\partial y}{\partial(1-\tau)} \text { and } \eta=(1-\tau) \frac{\partial y}{\partial m}
$$

denote the uncompensated elasticity of income earned and the income effect, respectively. Since $d m=y^{*} d \tau$, then

$$
R_{d}=-n\left(\overline{\eta^{u}} \bar{y}-\bar{\eta} y^{*}\right) \frac{\tau d \tau}{1-\tau}
$$

The optimal tax

The envelope theorem implies that the total welfare loss due to the small variation in τ, experienced by the top earners, is

$$
\bar{g} R_{S}
$$

where $\bar{g} \geq 0$ is the ratio of social marginal utility for the top earners to the marginal value of public funds for the government.
Then, the tax is optimal only when

$$
R_{s}+R_{d}=\bar{g} R_{S}
$$

which implies

$$
\tau=\frac{1}{1+\frac{\overline{\eta^{u}} \frac{\bar{y}}{y^{*}}-\bar{\eta}}{(1-\bar{g})\left(\frac{\bar{y}}{y^{*}}-1\right)}}
$$

The optimal tax

If PDF of income distribution takes the form of a Pareto distribution

$$
P(\text { income }>y)=\frac{A}{y^{a}}
$$

where A is a constant, then $\frac{\bar{y}}{y^{*}}=\frac{a}{a-1}$. Thus

$$
\tau=\frac{1-\bar{g}}{1-\bar{g}+\bar{\eta}^{u} a-\bar{\eta}(a-1)}
$$

If $\eta=0$ and $\bar{g} \approx 0$

$$
\tau=\frac{1}{1+\overline{\eta^{u}} a}
$$

The income distribution in Poland
sample of 50,000 taxpayers (MF, 2016)

The value of $\frac{\bar{y}}{y^{*}}$ for income levels between 60,000 and 350,000

The ratio $\frac{\bar{y}}{y^{*}}$ is roughly equal to 1.6 , which implies $a=2.66$, and if $\bar{g} \approx 0$

$$
\tau=\frac{1}{1+2.66 \overline{\eta^{u}}}
$$

The optimal marginal tax rate as a function of η^{u}

Bargain et al. (2011) estimated the labor supply elasticity in Poland to be 0.1 (women) and 0.04 (men).
Then the optimal marginal tax rate in Poland for high-income earners would be 79\% (women) and 90\% (men).

