Optimal income taxation of Polish low earners

Maciej Konrad Dudek
Konrad Walczyk
Warsaw School of Economics

Following Mirrlees (1971), Diamond (1998), Saez (2001)

$$
\max _{\tau()} W=\int_{a_{L}}^{a_{H}} G\left(U_{a}\right) f(a) d a
$$

subject to

$$
\begin{gathered}
U_{a}\left(y_{a}\right)=y_{a}-\tau\left(y_{a}\right)-\frac{1}{1+\eta}\left(\frac{y_{a}}{a}\right)^{1+\eta} \\
y_{a}^{\eta}=a^{1+\eta}\left[1-\tau^{\prime}\left(y_{a}\right)\right] \\
R=\int_{a_{L}}^{a_{H}} \tau\left(y_{a}\right) f(a) d a
\end{gathered}
$$

where:
$a \in\left[a_{L}, a_{H}\right]$ - agent's productivity;
$f(a)$ - PDF (the distribution of agents' skills, which is unobservable);
G - increasing and concave function of preferences of the policy maker with regard to redistribution
(social welfare);
U_{a} - agent's realized utility;
$y_{a}=a L$ - agent's labor income (so $L=\frac{y_{a}}{a}$);
τ - tax function;
η - inverse of the elasticity of labor supply with respect to the wage;

Here we identify $G(U)=\frac{U^{1-\theta}-1}{1-\theta}$, where $\theta \epsilon[0,1]$ captures the preferences of the policy maker with respect to redistribution. Naturally, as θ increases the motive for redistribution becomes stronger.

Hence, our optimal taxation problem involves two parameters η and θ. Furthermore, the solution is contingent on the distribution of skills described with $f(a)$. However, we know the actual distribution of income in Poland (Fig. 1).

Figure 1. Sample of 50,000 personal income taxpayers (MF, 2016)

We consider a simple piece-wise linear form of $\tau(\cdot)$

$$
\tau(y)= \begin{cases}T+\tau_{1} y & \text { for } y \leq \bar{y} \\ T+\tau_{1} \bar{y}+\tau_{2}(y-\bar{y}) & \text { for } y>\bar{y}\end{cases}
$$

where T, τ_{1}, and τ_{2} are constants.
Real life data together with the actual form of taxation in Poland

$$
\tau(y)= \begin{cases}0.18 y & \text { for } y \leq 85528 \\ 0.18 * 85528+0.32 *(y-85528) & \text { for } y>85528\end{cases}
$$

allow us for the determination of the actual distribution of skills $f(a)$ for a given value of η, given the actual distribution of income depicted in Fig. 1.

Now we are to choose four numbers T, τ_{1}, τ_{2}, and \bar{y} to maximize the welfare function W subject to the government budget constraint where the revenue requirement, R, is equal to the value empirically observed in the actual sample of the Polish tax returns.

We can make some general observations. As η increases, i.e. the elasticity of labor supply falls, the magnitude of basic income, T, increases. Furthermore, the marginal tax rates for $\theta=0.99$ fall when the elasticity of labor supply increases. Finally, the optimal tax function - in this family of functions - is in fact regressive.

In general, the shape of the optimal tax function is very sensitive to the values of the underlying parameters.

Please note that the results (Tab. 1\&2) have been obtained after all observations with income level equal to 0 were removed from the data set.

η	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$
T	-8729	-5823	-3996	-4693	-4209
τ_{1}	0.72	0.69	0.70	0.99	0.71
τ_{2}	0.44	0.32	0.21	0.14	0.09
\bar{y}	7200	7200	7800	7200	9000

Table 1: Optimal Tax Function for $\theta=\frac{1}{2}$

η	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$
T	-10600	-7510	-5301	-3976	-3560
τ_{1}	0.74	0.71	0.7	0.62	0.41
τ_{2}	0.53	0.4	0.27	0.18	0.11
\bar{y}	9200	9000	9400	10400	14600

Table 2: Optimal Tax Function for $\theta=0.99$

CASE workshop on taxation, Warsaw, March 25-26, 2019

If one chooses not to ignore observations with 0 income in the sample, the results substantially change (Tab. 3).

η	4	1	$\frac{1}{2}$
T	-4938	-512	-13
τ_{1}	0.15	0.1	0.15
τ_{2}	0.5	0.27	0.25
\bar{y}	30000	29000	92000

Table 3. Optimal tax function for $\theta=\frac{1}{2}$

