

CPB Netherlands Bureau for Economic Policy Analysis

Government spending shocks, sovereign risk and the exchange rate regime

Dennis Bonam Jasper Lukkezen

Structure

- 1. Theoretical predictions
- 2. Empirical evidence
- 3. Our model
 - SOE NK DSGE model (Galì and Monacelli, 2008)
 - + sovereign risk (á la Davig et al., 2010)
 - + sovereign risk pass-through (á la Corsetti et al., 2012a)
- 4. Application: expansionary fiscal contractions

Predictions (base case)

Output effects of increase in government consumption:

	Mechanisms	Fix/Flex	
Mundell- Flemming	Crowding out of exports through RER and monetary accomodation.	Flex: Zero output response.	
		Fix: Positive output response.	
New- Keynesian	Country openness determines crowding out. Monetary accomo- dation. Wealth effects.	Flex: Positive output response. Fix: Larger positive output re- sponse.	

Predictions (+ sovereign risk)

- · Government spending increases sovereign risk premium
- Output effects depend on the ERR:
 - ► Flex: UIP-condition leads to ER depreciation, supports exports
 - ► Fix: CB shields households from sovereign risk. No effect.

(Corsetti et al., 2011; Born et al., 2012)

Further insights: sovereign risk \rightarrow private risk Spain Italy

CPB Netherlands Bureau for Economic Policy Analysis 6/23

Euroframe Gov. spending shocks, sov. risk and the ERR \mid May 24, 2013

Predictions (+ sovereign risk + pass-through)

- · Government spending increases sovereign risk premium
- Output effects depend on the ERR:
 - ► Flex: UIP-condition leads to ER depreciation, supports exports
 - ► Fix: CB shields households from sovereign risk. No effect

(Corsetti et al., 2011; Born et al., 2012)

- Sovereign and private risk are now correlated. Output effects depend on the deterioration of private borrowing conditions:
 - Flex: Reduction in private borrowing leads ER depreciation, higher borrowing cost reduce consumption. Effect on multiplier indeterminate.
 - Fix: Reduction in private borrowing cost not off-set by ER depreciation. Multiplier reduces.

(Bouakez and Eyquem, 2011; Corsetti et al., 2012b)

Empirical strategy

- Corsetti et al. (2012a) estimate effect of exogenous government spending shock of OECD sample using Perotti (1999)'s two-step process:
 - 1. Regress lagged economic variables on government consumption, identify the residuals as exogenous policy shocks
 - 2. Regress exogenous policy shocks on economic variables, identify the coefficients as multipliers
- They find:
 - Output multipliers higher under fix than float
 - Output multipliers lower under sovereign risk
- We distinguish the effect of sovereign risk under fixed and flexible exchange rates and repeat their analysis
- Data: 19 OECD countries, 1970 onwards

Empirical results

- · Float vs peg:
 - Output responses of float and fix indistinguishable
 - Consumption rises under float and falls under fix
 - Appreciation of the RER under float
- Weak public finances:
 - Output response bigger for float
 - Consumption increases under float and decreases under fix
 - Depreciation of the RER under a float

Base case

Small open economy New Keynesian model (Galì and Monacelli, 2008):

Households	 Consume domestic and foreign goods Work domestically and enjoy leisure Invest in domestic government and interna-
Firms	tional risk free bonds - Intermediate good firms are monopolistically competitive and employ households
	- Final good firms are perfectly competitive and use intermediate goods
Monetary policy	 Uses a Taylor rule as a float or fixes the ER

Base case: government

- Exogenous government consumption G_t
- Financed through lump-sum taxation T_t and debt b_t
- Fiscal policy stance ϕ_b given by a Laffer curve

$$T_t = \phi_b \frac{T}{b/\pi} \left(\frac{1}{\pi_t} b_{t-1} - \frac{1}{\pi} b \right)$$

Euroframe Gov. spending shocks, sov. risk and the ERR \mid May 24, 2013

+ Sovereign risk

Government default mechanism á la Schabert and van Wijnbergen (2011):

- Ex-ante, default is unknown to government and investors, but its probability distribution *f* is known (anticipation game)
- Ex-post default depends on a draw \bar{b} from this distribution If the real debt burden $\frac{1}{\pi_t}R_{t-1}b_{t-1}$ exceeds \bar{b} default ensues
- Hence, ex-ante default probability is

$$\delta_t = \int_0^{\frac{1}{\pi_t}R_{t-1}b_{t-1}} f(\bar{b})d\bar{b}$$

Euroframe Gov. spending shocks, sov. risk and the ERR \mid May 24, 2013

+ sovereign risk pass-through

- Incomplete asset markets
 - State contingent sec's unavailable, just safe foreign bonds
 - Private borrowing conditions and thus consumption decision influenced by sovereign risk Consumption and RER untied now
- Foreigners lend f_t to households with a risk premium Ξ_t over the international risk free rate R^*
- Risk premium Ξ_t depends on public and private debt:

$$\Xi_t = \exp\left(rac{\chi_1 f_t q_t}{Y}
ight) \exp\left(rac{\chi_2 \delta_t b_{Ft}}{Y}
ight)$$

• $\chi_1 = 0.0017$ and $\chi_2 = 0.35$ (such that 1% additional government debt yields identical risk to 1% additional private risk)

Log-linearization, calibration

- Usual market clearing conditions
- · Log-linearized around the non-stochastic steady state
- Calibrated at literature defaults

+ for a BB-rated sovereign: $\delta=0.002$ and $\Phi=0.01$

Parameter	Description	Value
η	Elasticity between Foreign and Home goods	1.50
α	Country openness	0.60
α*	Foreign openness with respect to Home	0.01
σ	Inverse of the elasticity of intertemporal substitution	1.00
φ	Inverse of the Frisch labour supply elasticity	3.00
θ	Probability of non-price adjustment	0.75
β	Subjective discount factor	0.99
ϕ_{π}	Monetary policy rule coefficient, flexible exchange rate	1.50
ρ_r	Nominal interest rate smoothing parameter	0.80
ϕ_e	Monetary policy rule coefficient, fixed exchange rate	1 bn.
ϕ_b	Fiscal policy rule coefficient	0.10
$ ho_g$	Persistence in government spending innovations	0.90
$b_F/(4Y)$	Steady state real government debt held by Foreign to output ratio	0.60
f/(4Y)	Steady state real household external debt to output ratio	0.25
G/Y	Steady state government consumption to output ratio	0.25
T/Y	Steady state taxes to output ratio	0.274
C/Y	Steady state household consumption to output ratio	0.75
C^*/Y	Steady state Foreign consumption to output ratio	20.0
Φ	Sovereign default elasticity	0.01
δ	Sovereign default probability	0.002

Results

- Base case
 - Output response larger under fix
 - Consumption declines eventually, but not initially under fixed (!)
 - RER appreciates
- Base case + sovereign risk
 - Output response larger under float
 - Consumption increases under float
 - Initial RER depreciation under float
- Base case + sovereign risk + pass-through
 - Output differences widen
 - Consumption decreases for both float and fix
 - RER depreciates

Robustness

- Does the NER appreciation drive the results?
 - Yes, (peg float) increases for higher elasticity between H and F
 - Yes, (peg float) increases for smaller home bias
 - Yes, (peg float) decreases for higher degree of intertemporal substitution
- · Are expansionary fiscal contractions feasible?
 - Effects become more pronounced with higher default elasticity Φ
 - Effects become more pronounced with higher pass-through χ_2

Expansionary fiscal contractions: Initially yes!

Initial output response to fiscal contraction

Flexible exchange rates

0.35 Xo

-0.14

tnotno

-0.2

-8-87

Fixed exchange rates

0.04 0.25

0.03 Ф

Euroframe

Gov. spending shocks, sov. risk and the ERR | May 24, 2013

Expansionary fiscal contractions: Eventually no!

Cumulative output response to fiscal contraction

Euroframe

Gov. spending shocks, sov. risk and the ERR | May 24, 2013

Conclusion

- With sovereign risk, output multipliers larger under float due to depreciation (De Grauwe, 2012)
- Perfect capital markets shield households from sovereign risk
 under fix
- With pass-through household borrowing conditions are adversely affected by sovereign risk, increasing the output differences between pegs and floats This is an additional cost of a monetary union
- Expansionary fiscal contractions are possible under fixed ER with sufficient sovereign risk, however only initially.
- Data provides a poor match for consumption

Thank you for your attention!

Euroframe Gov. spending shocks, sov. risk and the ERR | May 24, 2013

Bibliography I

- Born, B., Jüßen, F., and Müller, G. (2012). Exchange rate regimes and fiscal multipliers. CEPR Discussion Papers 8986, CEPR Discussion Papers.
- Bouakez, H. and Eyquem, A. (2011). Government spending, monetary policy, and the real exchange rate. GATE Working Paper, 2011.
- Corsetti, G., Kuester, K., Meier, A., and Müller, G. (2012a). Sovereign risk, fiscal policy, and macroeconomic stability. IMF Working Paper, 2012.
- Corsetti, G., Kuester, K., and Müller, G. (2011). Floats, pegs and the transmission of fiscal policy. FRB of Philadelphia Working Paper, 2011.

Bibliography II

- Corsetti, G., Meier, A., and Müller, G. J. (2012b). What determines government spending multipliers? *Economic Policy*, 27(72):521–565.
- Davig, T., Leeper, E. M., and Walker, T. B. (2010). "unfunded liabilities" and uncertain fiscal financing. *Journal of Monetary Economics*, 57(5):600–619.
- De Grauwe, P. (2012). The governance of a fragile eurozone. *Australian Economic Review*, 45(3):255–268.
- Galì, J. and Monacelli, T. (2008). Optimal monetary and fiscal policy in a currency union. *Journal of International Economics*, 76(1):116–132.

Bibliography III

- Perotti, R. (1999). Fiscal policy when things are going badly. *Quarterly Journal of Economics*, 114(4)(4):1399–1436.
- Schabert, A. and van Wijnbergen, S. (2011). Sovereign default and the stability of inflation targeting regimes. Tinbergen Institute Discussion Papers 11-064/2/ DSF20.

Parameter	Description	Value
η	Elasticity between Foreign and Home goods	1.50
α	Country openness	0.60
α*	Foreign openness with respect to Home	0.01
σ	Inverse of the elasticity of intertemporal substitution	1.00
φ	Inverse of the Frisch labour supply elasticity	3.00
θ	Probability of non-price adjustment	0.75
β	Subjective discount factor	0.99
ϕ_{π}	Monetary policy rule coefficient, flexible exchange rate	1.50
ρ_r	Nominal interest rate smoothing parameter	0.80
ϕ_e	Monetary policy rule coefficient, fixed exchange rate	1 bn.
ϕ_b	Fiscal policy rule coefficient	0.10
$ ho_g$	Persistence in government spending innovations	0.90
$b_F/(4Y)$	Steady state real government debt held by Foreign to output ratio	0.60
f/(4Y)	Steady state real household external debt to output ratio	0.25
G/Y	Steady state government consumption to output ratio	0.25
T/Y	Steady state taxes to output ratio	0.274
C/Y	Steady state household consumption to output ratio	0.75
C^*/Y	Steady state Foreign consumption to output ratio	20.0
Φ	Sovereign default elasticity	0.01
δ	Sovereign default probability	0.002
χ_1	Risk premium elasticity w.r.t. household net foreign debt	0.0017
χ2	Risk premium elasticity w.r.t. sovereign default losses	0.35